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1. Introduction 

Lung cancer is the most common cause of cancer-related 

death. It is known for being particularly aggressive. Early 

detection of asymptomatic lung cancer is crucial for optimal 

treatment, which can greatly increase patients' survival 

rates. Since the beginning of the twentieth century, the 

incidence in the population has increased several times. Its 

growth is especially pronounced in industrialized countries, 

where lung cancer ranks first in the structure of oncological 

morbidity. Lung cancer also ranks among the top three 

cancers in terms of incidence rates for both men and 

women. As the precursor, lung nodules are the main 

indication of lung cancer. Therefore, lung screening by CT 

exams has been recommended for identifying and 

characterizing nodules to detect early lung cancer.  

The manifestation of lung nodules in CT images is 

complicated because of their irregular shapes, broad gray 

value range, and varied scale [1]. It is a time consuming and 

challenging task to effectively detect nodules for 

Radiologists. Additionally, differentiating benign from 

malignant nodules is another challenging task. Currently, 

pulmonary nodules incidentally observed on CT exams are 

handled by following consensus standards [2, 3]. But that 

has several drawbacks. Because the Radiologist’s 

interpretation of each lesion is a complicated process, the 

evaluation performance is highly dependent on the 

experience or skills of the Radiologist, so the diagnosis is 

not always consistent. Considering the low efficiency of 

human reading, some patients might miss the ideal 

opportunity for treatment [4,5,6,7]. 

The computer-aided automatic solution has been proposed 

and utilized to address these challenges. It is expected to be 

able to overcome physical human limitations, such as the 

limited gray level recognition of the human visual system, 

fatigue, and distraction [8]. It can also provide diagnostic 

results in a repeatable and reliable manner. It can therefore 

be used to reduce Radiologists’ workloads, locate nodules 

that Radiologists might overlook, and improve diagnostic 

accuracy [4]. Recently-developed artificial intelligence (AI) 

technology has made the computer-aided automatic 

solution even more promising. Deep learning, as one subset 

of AI technology, allows the model to learn high-dimensional 

abstract features from vast amounts of data and empowers 

the model to handle complex tasks. AI has demonstrated 

many compelling advantages and accomplishments 

[9,10,11,12,13] in imaging diagnosis and/or evaluation. 

In this study, we aim to quantitatively assess the 

performance of AI-assisted reading versus traditional 

radiology reports in detecting lung nodules and evaluate AI 

as a method of characterizing and classifying lung nodules 

in lung cancer screening. 

 

2. Materials and Methods 

2.1 Data Preparation and Categorization  

The study included 635 patients with a mean age of 52±9 

years old. They underwent chest CT exam from May to 

October 2021 at Republic Zangiota No-2 COVID Specialized 

Hospital, Uzbekistan. Scans were not included in the study 

if: 

(a) All lung lobes were not fully visible in the field of view                                                               

(b) The image contained motion artifacts                                                                              

(c) The image did not meet Digital Imaging and 

Communications in Medicine standards                           

(d) The Radiologists responsible for ground truth labeling 

were unable to confidently annotate the images [14] 

 

2.2 CT Image Acquisition 

For non-contrast-enhanced chest CT scanning, the uCT® 550 

scanner (United Imaging Healthcare, Shanghai, China) was 
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used. The collimation of the CT detector was 256 x 0.625 

mm, 64 x 0.625 mm, 96 x 0.6 mm, and 320 x 0 x 5 mm, 

respectively. In the supine position, each subject underwent 

an inspiratory CT scan during a single breath hold. The tube 

voltage was set to be either 120 kV or 100 kV depending on 

the patient size. The dose modulation was on, and the tube 

current ranged from 50 to 200 mAs. Slice thickness ranged 

from 0.625 to 1.0 mm. 

 

2.3 Radiologist Interpretation 

One Radiologist with over five years of experience reviewed 

the chest CT images. RadiAnt DICOM Viewer was used to 

review the studies. The Radiologist was given unlimited 

reading time and the option to adjust the display based on 

scan-specific characteristics to ensure optimal reading 

quality. Nodules in our dataset were divided into five types 

based on the National Comprehensive Cancer Network 

(NCCN) recommendations for lung cancer screening 

(version 2.2019): solid nodules (<5 or >5 mm), subsolid 

nodules (<5 or >5 mm), and calcified nodules. 

 

2.4 Artificial Intelligence-assisted Reading 

On chest CT images, uAI® Discover Chest1 (United Imaging 

Healthcare, Shanghai, China) can automatically identify and 

measure lung nodules. The CT console automatically sends 

the CT images to the AI server for lung nodule detection 

once acquired. It took about 2 to 4 minutes to transfer and 

process the whole volume images of each patient. In short, 

this system automatically generates a bounding box that 

shows the characteristics of the suspected nodule, such as 

its diameter and volume, as well as its components (solid, 

part-solid, or nonsolid). 

 

2.5 AI Model Development 

Recent research [15,16,17] studies have proposed using 

deep learning approaches for the detection and 

classification of lung nodules with CT images, as such 

approaches have demonstrated significant improvements in 

both tasks. In this work, the automated processing was 

performed using United Imaging Intelligence's uAI Discover 

Chest AI-based approach. For automated nodule detection, 

the uAI Discover Chest employs cascading feature pyramids 

and a heterogeneous convolutional neural network in its 

algorithm. Conventional deep learning approaches can only 

identify objects at a single scale – they cannot handle items 

with significant size variations. As shown in Figure 1, the uAI 

Discover Chest approach uses a 3D feature pyramids 

network (FPN) with V-Net to specifically solve the large-scale 

variance problem. 

 

 

 

Figure 1. The architecture of the feature pyramid network (FPN). 

 
1 This product is a work in progress; the information in this article represents 

ongoing research and development. No 510k application has been filed with the 

FDA. This product is not available for sale in the U.S. for clinical uses and also may 

not be available for such sales in other countries 
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2.6 Nodule Categorization 

Lung nodules are divided into three main types according to 

the NCCN guideline [18]: solid, part-solid, and non-solid 

nodules. Each  

type has a unique management process. Solid nodules are 

further divided into strata of <5 and >5 mm, part-solid 

nodules <5 and >5 mm, and calcified nodules. Typical 

nodules of different types are shown in Figure 2.

 

i)                                        ii) 

 

iii)                                         iv) 

 

v) 

 

Figure 2. Nodule Categorization according to NCCN. i) Solid >5 mm, ii) Solid <5 mm, iii) Subsolid >5 mm, iv) Subsolid <5 mm, v) Calcified. 
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2.7 Panel Review 

Two Radiologists with 15 and 20 years of experience in 

chest radiology were included in the review panel to 

evaluate the results reported by the Radiologist and AI 

system. The review panel was to establish a reference 

standard for the presence of nodules. Based on the 

standard, the figure of merit (FOM) could be calculated by 

including the number of false negatives, true negatives, 

false positives, and true positives. For instance, a lung 

nodule was regarded as a false-positive nodule if it was 

discovered by a Radiologist or detected by AI-assisted 

reading but was not confirmed by the review panel. The 

system interface of the uAI Discover Chest assisted lung 

nodule evaluation is shown in Figure 3. 

  

2.8 Statistical analysis 

In this study, 1082 nodules were included from the data of 

635 patients, further classified as 778 (<5mm = 513 and >5 

mm = 265) solid nodules, 283 (<5mm = 186 and >5 mm = 

97) subsolid nodules and 21 calcified nodules. Statistical 

analysis was performed using MedCalc®, version 19.3 

(MedCalc Software Ltd). Sensitivity and accuracy were 

measured to evaluate the performance of lung nodule 

detection, using the following equations, respectively: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦	 =
!"

(!"$%&)	
     (1) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	 =
!"$	!&	

!"$%"$!&$%&	
  (2) 

where TP is the true positive, TN is the true negative, FP is 

the false positive, and FN is the false negative. FP is an 

outcome where the model incorrectly predicts a nodule in 

the lung CT without its existence.  

   

3. Results 

In the detection of solid nodules, the sensitivity and 

accuracy were 96.80% and 94.08% for AI-reading and 

89.50% and 85.34% for radiological observation, 

respectively. The sensitivity and accuracy for <5 mm solid 

nodules were 96.80% and 94.34% with AI-reading and 

91.70% and 88.65% with radiological observation, and for >5 

mm solid nodules were 96.90% and 93.58% with AI-reading 

and 85.10% and 79.02% with radiological observation, 

respectively. 

 

 
Figure 3. uAI® Discovery Chest-assisted lung nodule evaluation system interface 

 

A similar analysis was performed for sub-solid and calcified 

nodules. The sensitivity and accuracy were 93.34% and 

89.04% for AI-reading and 80.00% and 75.26% for 

radiological observation, respectively, in the sub-solid 

nodule detection. The sensitivity and accuracy for <5 mm 

sub-solid nodules were 93.80% and 90.21% with AI-reading 
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and 87.10% and 82.32% with radiological observation, and 

for >5 mm sub-solid nodules were 92.50% and 86.86% with 

AI-reading and 67.40% and 63.36% with radiological 

observation, respectively.  

The sensitivity and accuracy of the AI-reading-based 

calcified nodule detection were 95.34% and 95.34%, and 

88.90% and 76.19% for Radiologist observation, 

respectively. The comparison of the detection performance 

between AI reading and Radiologist observation for all solid, 

subsolid, and calcified nodules is shown in Figure 4. Figure 5 

displays the bar graph of the sensitivity and accuracy of AI 

reading and Radiologist observation for <5 mm and >5 mm 

solid and subsolid nodules detection. 

 

 

Figure 4. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for solid, subsolid and calcified nodules detection. 

 

 

Figure 5. Bar graph of the sensitivity and accuracy of AI reading and Radiologist observation for a) <5 mm and >5 mm solid nodules and b) <5 mm and >5 mm subsolid nodule 

detection. 

 

4. Discussion 

The performance of AI reading and Radiologist observations 

were quantitively assessed in detecting multiple type 

nodules including solid, subsolid, and calcified ones. The 

assessment showed that the performance of AI was better 

than Radiologist performance in all nodule categories. This 

study suggests that AI was more sensitive and accurate in 

detecting the nodules. It is consistent with most other 

studies that AI is a reliable and sensitive method to use in 

lung nodule detection. 

Compared to earlier studies [19,20,21], uAI Discover Chest 

introduced several key advanced techniques. First, it used a 
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classification network to further reduce false positives and 

to analyze large-scale data. The model demonstrated a 

significantly higher identification rate in sensitivity and 

accuracy than Radiologists achieved. By utilizing the 

threshold ReLU, this heterogeneous network not only 

reduced the overfitting problem but also improved 

detection performance. The detection of solid nodules had 

the highest sensitivity as compared to sub-solids and 

calcified lesions. The results obtained in this work showed 

that the overall performance of uAI Discover Chest 

algorithm in detecting lung nodules of different sizes and 

different types depicted better outcomes as compared to 

the Radiologist’s assessment, especially in detecting nodules 

that the Radiologist missed. 

Nevertheless, this study had a limitation that need to be 

addressed in the future. There was no true gold standard 

available for the comparison of outcomes. For the 

evaluation in this study, a reference standard was carried 

out by the two Radiologists having an experience of 8 years 

and 7 years respectively. In such cases, there is a possibility 

of missing out fewer lung nodules which may lead to an 

inconsistency of obtained results. According to recent 

research, the performance of a cutting-edge artificial 

intelligence system for lung nodule detection and 

characterization is comparable to that of skilled 

Radiologists. Numerous AI studies discuss cutting-edge 

architectures for finding lung nodules, with the Radiologists' 

consensus as the reference standard [22,23,24].  

Finding all lung cancers, not all nodules, is the ultimate goal. 

Therefore, future research should concentrate on a 

reference standard that measures cancer detection and is 

based on histopathological evidence or follow-up imaging 

for at least 2 years (depending on morphology to judge the 

stability of lesions). Unfortunately, there are no publicly 

available datasets with a sizable number of CT-detected 

malignant nodules [25]. The NLST database is the largest 

database that is open to the public, but the metadata does 

not specify which nodules were biopsied. Therefore, even 

with all the available screening scans and knowledge of the 

pathological evidence, it is not always clear which CT lesions 

were cancerous. 

However, the issue of lack of data is currently being 

addressed by a variety of approaches, one of which is the 

creation and dissemination of databases that are open to the 

public. For instance, in 2017, the National Institutes of Health 

disseminated one hundred thousand labeled chest 

radiographs [26,27] in their collection. The labels of the data 

were obtained by applying the technology of natural 

language processing into reading the radiology reports. It 

makes it possible to implement bigger databases and skip the 

human labeling step. It will also resolve the imperfection in 

statistical significance and make it conducive to further study.  

The methods employed in lung nodule image classification 

have shown massive progress from user-defined to 

technological feature-based methods. Though the accuracy 

achieved with the user-defined features is over 90%, as seen 

in the work of Liu and Hou [28], and Wei and Cao [29], it is 

solely based on the professional understanding and analysis 

of nodules which is very subjective and lacks uniformity and 

standardization. Performance can be improved by 

combining it with other methods like generic features. Most 

research studies have resorted to using AI tools in 

developing algorithms, which are most efficient in 

identifying features of imaging and making precise 

differentiation, improving lung cancer detection [30]. AI can 

be employed to improve the efficiency of Radiologists in 

nodule detection. It must meet several requirements, such 

as processing speed, cost of training, maintenance, and 

implementation to detect various shapes, and low numbers 

of false positives, for Radiologists to use it routinely [31,32]. 

The use of a convolutional neural network (CNN) like the 

generative adversarial network (GAN) is another method 

that can be utilized to circumvent the lack of large datasets 

[33]. This method involves the generation of data sets that 

are fabricated to contain characteristics that are analogous 

to those of a specific training dataset. These GANs could be 

taught to learn representative features in a totally 

unsupervised fashion through the process of training [31]. 

The labeling step can be skipped entirely because the 

features are generated rather than chosen from images that 

already exist in the database. GANs can either be integrated 

into supervised strategies or used on their own without 

supervision. 

 

5. Conclusion 

In conclusion, the experiment’s results demonstrated that 

the uAI Discover Chest outperformed the Radiologists’ 

assessment on average in terms of lesion identification 

sensitivity. Furthermore, the performance of the uAI 
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Discover Chest algorithm to identify lung nodules is 

consistent and less subjective compared to assessments 

made by skilled Radiologists regardless of lung nodule size. 

Results obtained in this study also suggest that the use of 

uAI Discover Chest for clinical screening can greatly benefit 

Radiologists in making a substantial diagnosis. The uAI 

Discover Chest can be considered an effective tool due to its 

advantages such as consistent performance, faster 

processing, and high clinical efficiency.   

 

6. Image/Figure Courtesy 

All images are the courtesy of Republic Zangiota No-2 COVID 

Specialized Hospital, Taskent, Uzbekistan.   
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